Choosing effective strategies for waging war against error in manufacturing and service operations requires an understanding of “the enemy.” The types of error to be combatted, the sources of these errors, and the amount of error that will be tolerated are important components of a functional definition (see Vol. I for an introduction).
The traditional view is that the amount of error to be accepted is defined by the specification limits of each characteristic of interest. Exceeding the specified tolerance of any characteristic immediately transforms the process output from “good” to “bad.” This is a very restrictive and misleading point of view. Much greater insight is provided regarding product performance and customer satisfaction by loss functions.
0 Comments
A person’s first interaction with a business is often his/her experience in its parking lot. Unless an imposing edifice dominates the landscape, to be seen from afar, a person’s first impression of what it will be like to interface with a business is likely formed upon entering the parking lot. It is during this introduction to the facility and company that many expectations are formed. “It” starts in the parking lot. “It” is customer satisfaction.
There is some disagreement among quality professionals whether or not precontrol is a form of statistical process control (SPC). Like many tools prescribed by the Shainin System, precontrol’s statistical sophistication is disguised by its simplicity. The attitude of many seems to be that if it isn’t difficult or complex, it must not be rigorous.
Despite its simplicity, precontrol provides an effective means of process monitoring with several advantages (compared to control charting), including:
Lesser known than Six Sigma, but no less valuable, the Shainin System is a structured program for problem solving, variation reduction, and quality improvement. While there are similarities between these two systems, some key characteristics lie in stark contrast.
This installment of “The War on Error” introduces the Shainin System, providing background information and a description of its structure. Some common problem-solving tools will also be described. Finally, a discussion of the relationship between the Shainin System and Six Sigma will be presented, allowing readers to evaluate the potential for implementation of each in their organizations. Despite the ubiquity of corporate Six Sigma programs and the intensity of their promotion, it is not uncommon for graduates to enter industry with little exposure and less understanding of their administration or purpose. Universities that offer Six Sigma instruction often do so as a separate certificate, unintegrated with any degree program. Students are often unaware of the availability or the value of such a certificate.
Upon entering industry, the tutelage of an invested and effective mentor is far from guaranteed. This can curtail entry-level employees’ ability to contribute to company objectives, or even to understand the conversations taking place around them. Without a structured introduction, these employees may struggle to succeed in their new workplace, while responsibility for failure is misplaced. This installment of “The War on Error” aims to provide an introduction sufficient to facilitate entry into a Six Sigma environment. May it also serve as a refresher for those seeking reentry after a career change or hiatus. There is a “universal sequence for quality improvement,” according to the illustrious Joseph M. Juran, that defines the actions to be taken by any team to effect change. This includes teams pursuing error- and defect-reduction initiatives, variation reduction, or quality improvement by any other description.
Two of the seven steps of the universal sequence are “journeys” that the team must take to complete its problem-solving mission. The “diagnostic journey” and the “remedial journey” comprise the core of the problem-solving process and, thus, warrant particular attention. Of the “eight wastes of lean,” the impacts of defects may be the easiest to understand. Most find the need to rework or replace a defective part or repeat a faulty service, and the subsequent costs, to be intuitive. The consequences of excess inventory, motion, or transportation, however, may require a deeper understanding of operations management to fully appreciate.
Conceptually, poka yoke (poh-kah yoh-keh) is one of the simplest lean tools; at least it was at its inception. Over time, use of the term has morphed and expanded, increasing misuse and confusion. The desire to appear enlightened and lean has led many to misappropriate the term, applying it to any mechanism used, or attempt made, to reduce defects. Poka yoke is often conflated with other process control mechanisms, including engineering controls and management controls. To effectively reduce the occurrence of errors and resultant defects, it is imperative that process managers differentiate between poka yoke devices, engineering controls, and management controls. Understanding the capabilities and limitations of each allows appropriate actions to be taken to optimize the performance of any process. Every organization wants error to be kept at a minimum. The dedication to fulfilling this desire, however, often varies according to the severity of consequences that are likely to result. Manufacturers miss delivery dates or ship faulty product; service providers fail to satisfy customers or damage their property; militaries lose battles or cause civilian casualties; all increase the cost of operations.
You probably have some sensitivity to the effects errors have on your organization and its partners. This series explores strategies, tools, and related concepts to help you effectively combat error and its effects. This is your induction; welcome to The War on Error. Uses of augmented reality (AR) in various industries has been described in previous installments of “Augmented Reality” (Part 1, Part 2). In this installment, we will explore AR applications aimed at improving customer experiences in service operations. Whether creating new service options or improving delivery of existing services, AR has the potential to transform our interactions with service providers.
Front-office operations are mostly transparent due to customer participation. Customer presence is a key characteristic that differentiates services from the production of goods. Thus, technologies employed in service industries are often highly visible. This can be a blessing or a curse. When we see or hear a reference to advanced technologies, many of us think of modern machinery used to perform physical processes, often without human intervention. CNC machining centers, robotic work cells, automated logistics systems, drones, and autonomous vehicles often eclipse other technologies in our visions. Digital tools are often overlooked simply because many of us find it difficult to visualize their use in the physical environments we regularly inhabit.
There is an entire class of digital tools that is rising in prominence, yet currently receives little attention in mainstream discourse: augmented reality (AR). There are valid applications of AR in varied industries. Increased awareness and understanding of these applications and the potential they possess for improving safety, quality, and productivity will help organizations identify opportunities to take the next step in digital transformation, building on predecessor technologies such as digital twins and virtual reality. Digital Twin technology existed long before this term came into common use. Over time, existing technology has advanced, new applications and research initiatives have surfaced, and related technologies have been developed. This lack of centralized “ownership” of the term or technology has led to the proliferation of differing definitions of “digital twin.”
Some definitions focus on a specific application or technology – that developed by those offering the definition – presumably to coopt the term for their own purposes. Arguably, the most useful definition, however, is the broadest – one that encompasses the range of relevant technologies and applications, capturing their corresponding value to the field. To this end, I offer the following definition of digital twin: An electronic representation of a physical entity – product, machine, process, system, or facility – that aids understanding of the entity’s design, operation, capabilities, or condition. The advent of a new year inspires a great deal of reflection and anticipation. Many of us will evaluate our personal and professional progress over the past 12 months and set new goals for the upcoming year. The same is true for “The Third Degree;” this installment will look back at some posts to provide additional resources related to the topics discussed. It will also look ahead to preview topics to be covered in future posts.
Spaghetti Diagrams The origin of the spaghetti diagram – when and where it was first used or who first recognized its resemblance to a plate of pasta – is not well known. What is clear is that this simple tool can be a very powerful representation of waste in various processes. An easily-understood visual presentation often provides the impetus needed for an organization to advance its improvement efforts.
While flow charts (see Vol. II) depict logical progressions through a process, spaghetti diagrams illustrate physical progressions. The movements tracked may be made by people, materials, paperwork, or other entities. As is the case with other maps, spaghetti diagrams can be created in very simple form, with information added as improvement efforts advance. Since the dawn of the industrial age, manufacturers have sought ways to improve their operations. Over time, these attempts became more sophisticated, as techniques and models for the measurement of performance were developed.
Performance measurement for service industries is a much more recent development. Fortunately, much of the pioneering work in performance measurement undertaken in manufacturing industries is also applicable to service providers. However, some techniques require adaptation to the unique operating characteristics of service industries to provide the full benefit of the monitoring tools. Overall Equipment Effectiveness (OEE) is a case in point. OEE could be used to track performance of equipment used to provide a service. It is much more informative of the core objectives of the operation, however, to use the analogous Overall Service Effectiveness (OSE). As the name implies, it provides a “big picture” view of the quality of service provided to customers. Flow Charts Introduced nearly a century ago, flow charts are one of the most basic mapping tools available; they are also very useful. As such, they have become ubiquitous, though the name used may vary slightly – flow diagram, process map, etc. When packaged with a PFMEA and Control Plan, it is a Process Flow Diagram (PFD). Extensions of the original flow chart have also been developed, identified with new aliases for what is, at its core, a process flow chart.
The variations need not be a distraction; a basic flow chart can be very useful to your organization. Once a basic chart is available, it can be expanded or modified to suit your needs as you learn and gain experience. The following discussion demonstrates this progression. Businesses that provide great customer service can be identified by observing the behavior of their customers. Do customers patronize a business by default, or do they explore all other options first? Do customers enthusiastically recommend a business to friends, family, and colleagues? Do customers react to performance claims made by the business with deep skepticism? If patrons have genuinely positive feelings about their interactions with a service provider, it is an indicator that the company provides great customer service.
The objective of great customer service is to produce loyal customers – those that return regularly, and bring others with them, without significant additional effort or expenditure. Customer acquisition costs can become burdensome if customer retention rates are low. Improving customer service quality is a cost-effective approach to increasing customer retention (i.e. loyalty), thereby reducing customer acquisition costs. Entertainment, Education, Marketing, or Benchmarking? Yes! The summer vacation season is under way. If you have openings in your vacation agenda, or are looking for mini-vacation ideas, you may want to consider “tourism factories.” These include plant tours, participatory agricultural and culinary experiences, and other tourist services that connect consumers to products in unique ways.
Tourism factories serve varying interests of visitors and hosts. Whether it serves to open a new communication channel between a company and its customers, reinforce a marketing message, provide an educational opportunity, or simply satisfy the curiosity of inquisitive types, a well-designed tourist experience can be an incredibly valuable asset for many types of businesses. Increasing numbers of these tourist experiences are available as business leaders around the world recognize their potential. Companies, universities, athletes, hospitals and physicians, municipalities, and any other entity that can be compared in any way often claim to be “world-class.” Is this a quantitative or qualitative assessment? Can “world-class” be objectively determined, or is it subject to the biases inherent to the assessor? Does it mean, simply, that the entity – whatever type it may be – is “good enough?”
The first definition of world-class on Dictionary.com is “ranking among the world’s best; outstanding.” This sounds like a grand achievement and a worthy goal. Unfortunately, it is completely meaningless. Customer Experience Drives Business Performance Customer service issues in the hospitality industry often receive a great deal of attention, while other service industries typically receive little. The quality of customer service is no less important, however, to the multitude of other service occupations. Hotels, restaurants, and airlines are susceptible to high-profile customer service failures, but the average person has many more interactions with other businesses that are unlikely to garner media attention. Small, local businesses, for example, rarely enter the national spotlight; however, the customer experience they provide is equally critical to their survival as is it to their famous-name counterparts.
|
AuthorIf you'd like to contribute to this blog, please email jay@jaywink.com with your suggestions. Archives
August 2020
Categories
All
![]() © JayWink Solutions, LLC
|