Of the “eight wastes of lean,” the impacts of defects may be the easiest to understand. Most find the need to rework or replace a defective part or repeat a faulty service, and the subsequent costs, to be intuitive. The consequences of excess inventory, motion, or transportation, however, may require a deeper understanding of operations management to fully appreciate.
Conceptually, poka yoke (poh-kah yoh-keh) is one of the simplest lean tools; at least it was at its inception. Over time, use of the term has morphed and expanded, increasing misuse and confusion. The desire to appear enlightened and lean has led many to misappropriate the term, applying it to any mechanism used, or attempt made, to reduce defects. Poka yoke is often conflated with other process control mechanisms, including engineering controls and management controls. To effectively reduce the occurrence of errors and resultant defects, it is imperative that process managers differentiate between poka yoke devices, engineering controls, and management controls. Understanding the capabilities and limitations of each allows appropriate actions to be taken to optimize the performance of any process.
0 Comments
Every organization wants error to be kept at a minimum. The dedication to fulfilling this desire, however, often varies according to the severity of consequences that are likely to result. Manufacturers miss delivery dates or ship faulty product; service providers fail to satisfy customers or damage their property; militaries lose battles or cause civilian casualties; all increase the cost of operations.
You probably have some sensitivity to the effects errors have on your organization and its partners. This series explores strategies, tools, and related concepts to help you effectively combat error and its effects. This is your induction; welcome to The War on Error. Previous volumes of “Making Decisions” have alluded to voting processes, but were necessarily lacking in detail on this component of group decision-making. This volume remedies that deficiency, discussing some common voting systems in use for group decision-making. Some applications and issues that plague these systems are also considered.
Although “voting” is more often associated with political elections than decision-making, the two are perfectly compatible. An election, after all, is simply a group (constituency) voting to decide (elect) which alternative (candidate) to implement (inaugurate). Many descriptions of voting systems are given in the context of political elections; substituting key words, as shown above, often provides sufficient understanding to employ them for organizational decision-making. “Fundamentals of Group Decision-Making” (Vol. IV) addressed structural attributes of decision-making groups. In this volume, we discuss some ways a group’s activities can be conducted. An organization may employ several different techniques, at different times, in order to optimize the decision-making process for a specific project or group.
The following selection of techniques is not comprehensive; organizations may discover others that are useful. Also, an organization may develop its own technique, often using a commonly-known technique as a foundation on which to create a unique process. The choice or development of a decision-making process must consider the positive and negative impacts – potential or realized – on decision quality, efficiency, and organizational performance factors. In business contexts, many decisions are made by a group instead of an individual. The same is true for other types of organization as well, such as nonprofits, educational institutions, and legislative bodies. Group decision-making has its advantages and its disadvantages. There are several other considerations also relevant to group decision-making, such as selecting members, defining decision rules, and choosing or developing a process to follow.
Successful group decision-making relies on a disciplined approach that proactively addresses common pitfalls. If an organization establishes a standard that defines how it will form groups and conduct its decision-making activities, it can reap the rewards of faster, higher-quality decisions, clearer expectations, less conflict, and greater cooperation. While the Rational Model provides a straightforward decision-making aid that is easy to understand and implement, it is not well-suited, on its own, to highly complex decisions. A large number of decision criteria may create numerous tradeoff opportunities that are not easily comparable. Likewise, disparate performance expectations of alternatives may make the “best” choice elusive. In these situations, an additional evaluation tool is needed to ensure a rational decision.
The scenario described above requires Multi-criteria Analysis (MCA). One form of MCA is Analytic Hierarchy Process (AHP). In this installment of “Making Decisions,” application of AHP is explained and demonstrated via a common example – a purchasing decision to source a new production machine. The rational model of decision-making feels familiar, intuitive, even obvious to most of us. This is true despite the fact that few of us follow a well-defined process consistently. Inconsistency in the process is reflected in poor decision quality, failure to achieve objectives, or undesired or unexpected outcomes.
Versions of the rational model are available from various sources, though many do not identify the process by this name. Ranging from four to eight steps, the description of each varying significantly, these sources offer a wide variety of perspectives on the classic sequential decision-making process. Fundamentally, however, each is simply an interpretation of the rational model of decision-making. Given the importance of decision-making in our personal and professional lives, the topic receives shockingly little attention. The potential consequences of low-quality decisions warrant extensive courses to build critical skills, yet few of us ever receive significant instruction in decision-making during formal education, as part of on-the-job training, or from mentors. It is even under the radar of many conscientious autodidacts. The “Making Decisions” series of “The Third Degree” aims to raise the profile of this critical skillset and provide sufficient information to improve readers’ decision-making prowess.
It is helpful, when beginning to study a new topic, to familiarize oneself with some of the unique terminology that will be encountered. This installment of “Making Decisions” will serve as a glossary for reference throughout the series. It also provides a preview of the series content and a directory of published volumes. Uses of augmented reality (AR) in various industries has been described in previous installments of “Augmented Reality” (Part 1, Part 2). In this installment, we will explore AR applications aimed at improving customer experiences in service operations. Whether creating new service options or improving delivery of existing services, AR has the potential to transform our interactions with service providers.
Front-office operations are mostly transparent due to customer participation. Customer presence is a key characteristic that differentiates services from the production of goods. Thus, technologies employed in service industries are often highly visible. This can be a blessing or a curse. Some of the augmented reality (AR) applications most likely to attract popular attention were presented in “Part 1: An Introduction to the Technology.” When employed by manufacturing companies, AR is less likely to be experienced directly by the masses, but may have a greater impact on their lives. There may be a shift, however, as AR applications pervade product development and end-user activities.
In this installment, we look at AR applications in manufacturing industries that improve operations, including product development, quality control, and maintenance. Some are involved directly in the transformation of materials to end products, while others fill supporting roles. The potential impact on customer satisfaction that AR use provides will also be explored. When we see or hear a reference to advanced technologies, many of us think of modern machinery used to perform physical processes, often without human intervention. CNC machining centers, robotic work cells, automated logistics systems, drones, and autonomous vehicles often eclipse other technologies in our visions. Digital tools are often overlooked simply because many of us find it difficult to visualize their use in the physical environments we regularly inhabit.
There is an entire class of digital tools that is rising in prominence, yet currently receives little attention in mainstream discourse: augmented reality (AR). There are valid applications of AR in varied industries. Increased awareness and understanding of these applications and the potential they possess for improving safety, quality, and productivity will help organizations identify opportunities to take the next step in digital transformation, building on predecessor technologies such as digital twins and virtual reality. The use of digital technologies in commercial applications is continually expanding. Improvements in virtual reality (VR) systems have increased the practical range of opportunities for their use across varied industries.
As discussed with respect to other technologies experiencing accelerated development and expansion, several definitions of “virtual reality” may be encountered. Researchers and practitioners may disagree on which applications qualify for use of the term. For our purposes, we will use a simple description of virtual reality: “Virtual reality” is an experience created, using a digital twin or other model, where
Digital Twin technology existed long before this term came into common use. Over time, existing technology has advanced, new applications and research initiatives have surfaced, and related technologies have been developed. This lack of centralized “ownership” of the term or technology has led to the proliferation of differing definitions of “digital twin.”
Some definitions focus on a specific application or technology – that developed by those offering the definition – presumably to coopt the term for their own purposes. Arguably, the most useful definition, however, is the broadest – one that encompasses the range of relevant technologies and applications, capturing their corresponding value to the field. To this end, I offer the following definition of digital twin: An electronic representation of a physical entity – product, machine, process, system, or facility – that aids understanding of the entity’s design, operation, capabilities, or condition. Reviewing past installments of “The Third Degree” in preparation for the update post “Hindsight is 20/20; Foresight is 2020,” I realized that there had been a significant oversight. This post is aimed at correcting that oversight and filling the void I’m sure we have all felt.
In “Of Delegating and Dumping,” a compare-and-contrast exploration of the two managerial styles, I referenced “The Dumper’s Creed,” but had not presented it. Until now! The advent of a new year inspires a great deal of reflection and anticipation. Many of us will evaluate our personal and professional progress over the past 12 months and set new goals for the upcoming year. The same is true for “The Third Degree;” this installment will look back at some posts to provide additional resources related to the topics discussed. It will also look ahead to preview topics to be covered in future posts.
Given the amount of time people spend in meetings, organizations expend shockingly little effort to ensure that these meetings have value. Rarely is an employee – much less a volunteer – provided any formal instruction on leading or participating in meetings; most of us learn by observing the behavior of others. The low probability that those around us have been trained in optimal meeting practices renders this exercise equivalent to “the blind leading the blind.” The nature of these meetings is more likely to demonstrate the power structure of the organization than proper protocols.
Typical meetings suffer from a raft of problems that render them inefficient or ineffective. That is, they range from a moderate waste of time, while accomplishing something, to a total waste of time that accomplishes nothing. This need not be the case, however. Though an immediate overhaul may be an unrealistic expectation, incremental changes can be made to the way meetings are conducted, progressively increasing their value and developing a more efficient organization. Troubleshooting a system can be guided by instructions created by its developer or someone with extensive experience operating and maintaining similar systems. Without a specific context, however, a troubleshooting process can be very difficult to describe. There is an enormous number of variables that could potentially warrant consideration. The type of system (mechanical, power transmission, fluid power, electrical, motion control, etc.), operating environment (indoor, outdoor, arid, tropical, arctic, etc.), and severity of duty are only the beginning.
The vast array of systems and situations that could be encountered requires that troubleshooting be learned as a generalized skill. What tool set could be more general, more universally applicable, than our senses of sight, hearing, smell, taste, touch, and the most powerful of all, common sense? Spaghetti Diagrams The origin of the spaghetti diagram – when and where it was first used or who first recognized its resemblance to a plate of pasta – is not well known. What is clear is that this simple tool can be a very powerful representation of waste in various processes. An easily-understood visual presentation often provides the impetus needed for an organization to advance its improvement efforts.
While flow charts (see Vol. II) depict logical progressions through a process, spaghetti diagrams illustrate physical progressions. The movements tracked may be made by people, materials, paperwork, or other entities. As is the case with other maps, spaghetti diagrams can be created in very simple form, with information added as improvement efforts advance. Facility Layout or Floor Plan Of all business maps, the facility layout, or floor plan, is one of the most universal. If an organization has a physical presence – office, storefront, factory, etc. – it should have a documented layout that is updated as changes are made.
Documented layouts are most commonly prepared for manufacturing facilities because of their large footprints and large numbers of machines housed within them. Every type of organization, however, can benefit from a properly maintained layout drawing. Readily-available CAD software and trained users makes this a relatively simple task to complete. Since the dawn of the industrial age, manufacturers have sought ways to improve their operations. Over time, these attempts became more sophisticated, as techniques and models for the measurement of performance were developed.
Performance measurement for service industries is a much more recent development. Fortunately, much of the pioneering work in performance measurement undertaken in manufacturing industries is also applicable to service providers. However, some techniques require adaptation to the unique operating characteristics of service industries to provide the full benefit of the monitoring tools. Overall Equipment Effectiveness (OEE) is a case in point. OEE could be used to track performance of equipment used to provide a service. It is much more informative of the core objectives of the operation, however, to use the analogous Overall Service Effectiveness (OSE). As the name implies, it provides a “big picture” view of the quality of service provided to customers. Flow Charts Introduced nearly a century ago, flow charts are one of the most basic mapping tools available; they are also very useful. As such, they have become ubiquitous, though the name used may vary slightly – flow diagram, process map, etc. When packaged with a PFMEA and Control Plan, it is a Process Flow Diagram (PFD). Extensions of the original flow chart have also been developed, identified with new aliases for what is, at its core, a process flow chart.
The variations need not be a distraction; a basic flow chart can be very useful to your organization. Once a basic chart is available, it can be expanded or modified to suit your needs as you learn and gain experience. The following discussion demonstrates this progression. An Introduction to Business Mapping The bad news: You cannot run a business with GPS. No omniscient electronic voice will provide all the information needed, in a timely manner, to address forthcoming challenges. You will need to read a map and make navigational decisions for yourself and your organization.
The good news: A number of maps are available – different types, displaying diverse information, for various purposes – to guide managers through unfamiliar territory. In the same way that that street maps, topographical maps, nautical charts, and aeronautical charts are each specialized for different modes of travel, business maps are most helpful when there is alignment of the type of map used and the challenge to which it is applied. “Beware the Metrics System – Part 1” presented potential advantages of implementing a metrics system, metric classifications, and warnings of potential pitfalls. This installment will provide examples from diverse industries and recommendations for development and management of metrics systems.
Every business uses metrics to assess various aspects of its performance. Some – usually the smallest and least diversified – may focus exclusively on the most basic financial measures. Others may be found at the opposite end of the spectrum, tracking a multitude of metrics across the entire organization – finance, operations, sales & marketing, human resources, research & development, and so on. The more extensively metricated organization is not necessarily more efficiently operated or more effectively managed, however. The administration of a metrics system incurs costs that must be balanced with its utility for it to be valuable to an organization.
An efficacious metrics system can greatly facilitate an organization’s management and improvement; a misguided one can be detrimental, in numerous ways, to individuals, teams, and the entire organization. The structure of a well-designed metrics system is influenced by the nature of the organization to be monitored – product vs. service, for-profit vs. nonprofit, public vs. private, large vs. small, start-up vs. mature, etc. Organizations often choose to present their metrics systems according to popular templates – Management by Objectives (MBO), Key Performance Indicators (KPI), Objectives and Key Results (OKR), or Balanced Scorecard – but may choose to create a unique system or a hybrid. No matter what form it takes, or what name it is given, the purpose of a metrics system remains constant: to monitor and control – that is, to manage – the organization’s performance according to criteria its leaders deem relevant. Always on the lookout for useful or clever analogies that facilitate understanding of complex systems or ideas, some discoveries are made with great pleasure and some disappoint. The law of averages demands it.
The jigsaw puzzle is no stranger to analogy-building. One example appeared earlier this year in Plant Services’ “Human Capital” column (“The Jigsaw Puzzle of Reliability,” March 2019). Unfortunately, this is one that left me underwhelmed. Perhaps space limitations precluded full development of the analogy; the author’s forthcoming book may correct this. In any case, this installment of “The Third Degree” is my attempt to redeem the venerable jigsaw puzzle analogy. |
AuthorIf you'd like to contribute to this blog, please email jay@jaywink.com with your suggestions. Archives
April 2022
Categories
All
![]() © JayWink Solutions, LLC
|